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Abstract. A method for deriving lower bounds to the ground states of nonrelativistic 
quantum Hamiltonians is developed and illustrated with examples. The bound depends on 
a trial function and can be made arbitrarily close to the true value, except for systems of 
lermions. For one-dimensional and spherically symmetric systems bounds for the excited 
states may also be derived. From the bound another one as found by Barnsley may be 
derived. 

1. Introduction 

Bargmann (1972) derived integral inequalities which can be used to give a lower bound 
for the kinetic energy of a wavefunction in terms of expectation values of r“.  Sachrajda 
er a1 (1978) observed that one may use functions other than just r n  and proposed to use 
these bounds for a variational principle. Although their statement about ‘localised 
minima’ to provide general lower bounds is incorrect (we give an explicit counter- 
example, example l), their approach can be extended to arbitrary dimensions and made 
fruitful in a rather unexpected way. 

A slightly extended version of the formal arguments of Sachrajda er a1 is given in § 2 
and discussed rigorously in § 3. Section 4 contains the new results and § 5 some 
applications. 

2. The formal arguments 

Throughout this paper we set h 2 / 2 m  = 1 and consider Hamiltonians H = K + V, 
K = -A in n space dimensions. We take %=2’* (Rn) .  The Schwaiz inequality in 
C” 0 X tells us 

(1) 
where g is an n-component vector function. Suppose g is real. By partial integration 

( 2 )  

(V$, V$)(g$, g$) 2 I(V$? &)I2 

2 RdV$L, 84) = -(& (V . gM), 

( $ 9  W )  = (V4,  V$) 2 ($9 ( V .  g)4)2/4($, g 2 9 ) .  

and, since the niodulus squared is not smaller than the real part squared, 

(3) 
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This may be looked upon as a quasiclassical term, for it does not really use the 
wavefunction 4, but only the measure dp (x )  = j4(x)12 dx which it determines. We may 
therefore write 

Suppose you could apply variational calculus in this situation. Take E as the Lagran- 
gian multiplier for the condition l l c ~ l l =  1. Then you would have to evaluate the equation 

for those x where dp (x )  f 0 (i.e. x E supp(c~)) and the inequality 

if x E supp(p) 
if x g  supp(cc.). 

In generic situations, V . g, g2 and V will be transversal, which means that ( 6 a )  can 
only hold for supp(p) being some n - 1-dimensional hypersurface. Actually the 
situation is much more favourable. 

3. Conditions for the admissibility of g 

To be specific, we consider three types of situation. 
(A) V is a sum of Coulomb pair potentials for ( f ) n  particles. 
(B) v = V,  + v2, v1 E P([W"), v2 E = Y ~ ( R ~ \ { o ) ) ~ ~ ~ ,  v2(x) 3 -n ( n  -4)/4/xi2. 
(C) n = 1, K = -d2/ax2 on the interval [-/, + I ]  with Dirichlet boundary conditions 

A further condition on V for all three cases is imposed below in condition 4. 
In order to know what conditions g has to fulfil so that part 2 makes sense, one has 

first to decide which class of 4's  should be admitted. A maximal choice (with respect to 
equation (1)) would be the form domain Q ( K )  of the kinetic energy. Then one had to 
ensure that Q ( g 2 )  13 Q ( K ) ,  which would be too restrictive for practical purposes. A 
reasonable choice is to let 4 vary in a form core % ( H )  of the Hamiltonian. That will 
ensure that inf (4, H+) is the same as if all 4's of the domain of H, 9 ( H ) ,  were admitted. 

IV / saK+b,  a < l .  

As form cores we may choose: 
(A) C,"(R") (theorem X 16 of Reed and Simon (1972)); 
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(B) CF (R"\{O}) (theorem X 30 of Reed and Simon); 
(C) {II, E CF [-1, + I ]  : $ ( - I )  = $(+1) = 0). This is an operator core for K and a form 

core for H by the KLNM theorem (Reed and Simon, theorem X 17). 
In all three cases we have to demand the following conditions. 

Condition 1. The components gi are locally Z2, that is, g2 is finite on all compact sets, 
except those for which, in case B, 0 E K, in case C, -1 or + I  E K. g l ( x )  may grow A 
without restriction for x + 00, B without restriction for x +CO and x + 0 and C not 
stronger than ( x  * 1)-3'2*', E > 0. 

One could argue that the infimum of ($, H4)  is needed only for real 4's. With this 
restriction one could admit complex g's and would get instead of (3): 

That does not seem to be any advantage, so we further assume condition 2. 

Condition 2. g is real. 
For cl, E C: one also has / + I 2  E C: and a,$ E (2:. We may view g, as a continuous 

linear functional on C? and define (V . g )  as the weak derivative: (a,gi)[ f ]  = -g i [a i f ] .  
The derivation of equation (2) then takes the form 

(8) (-aigi)[+$] = gi[$di4,]+ gi[4ai&I = 2 Re gc[@ai&I. 

(4, K$) 3 14(o)14/11$112. (9) 

An example is in one dimension: g ( x )  = (O(x) -i), g ' ( x )  = 6 ( x ) .  Equation ( 3 )  becomes 

This can be used to bound the wavefunction by the kinetic energy, but we will not follow 
this line here. 

Since one wants equation (4) to be defined for a class of measures which contains 
'almost all' point measures, one has to ensure that V . g, g2 and V are rather tame 
functions. 

Condition 3. The closure of the set of points where V . g, g2 or V is discontinuous has 
Lebesgue measure zero. 

Definition. We denote the union of this closed set with {x,  g ( x )  = 0 }  by S.  
In order to be able to divide by (4, g 2 $ )  we must have: 

Condition 4. The Lebesgue measure of {x, g ( x )  = 0) is zero. 

4. The main results 

In all that follows, CC, means any of the normalised elements of the appropriate form 
core, the 'allowed set' is W"\S or [ - I ,  +1]\S, respectively. A ' 8  measure' is a positive 
normalised measure, the support of which is one point of the allowed set. A convex 
combination is a linear combination with real coefficients A,  that satisfy A i  L 0, A i  = 1. 

Theorem 1. The set of 3-tuples ((4, V4), (9, g2$) ,  (4, V . g4) )  is contained in the closure 
of { (p  ( V ) ,  p (g2) ,  p (V . g)} ,  where each p is a convex combination of four 6 measures. 
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Proof. For a given 9, consider p K :  

where K is a compact subset of the allowed set. We write f = ( f l ,  f 2 ,  f3) = (V, g 2 ,  V . g ) .  
For every E > 0 there is a K such that I($, f .4) - p K ( f ) l  E ,  j = 1,2,3.  Each IK defines 
a positive, normed continuous linear functional, a ‘state’ of C ( K ) .  By the Krein- 
Milman theorem it is contained in the closure of the convex hull of the extreme states 
which are the 8 measures on K. Therefore p K  cf) is in the closure of the convex hull CHK 
of f ( K )  = { f ( x ) ,  x E K }  c R3. Since f ( K )  is compact, CHK is already closed. By the 
theorem of Caratheodory every point in CHK is already a convex combination of four 
points of f ( K )  (Roberts and Varberg 1973). Now let E LO. 

Theorem 2. For each 4, define pus by pus(f) = j  d“x. Consider E(g, p )  as given in 
equation (4). The closure of {E(g, pus)} ( g  fixed, $ variable) equals the closure of 
{E(g, I ) } ,  where each p is a convex combination of three S measures. 

Proof. Consider p~ as above. {E(g, p$) }  c {E(g, p ~ ) } .  We show that for each p K  there 
is a convex combination of three S measures yielding the same value of E. By theorem 
1, F K  defines a point in a three-dimensional simplex T with vertices given by S,(f). The 
function E = (a2/4b) + c is monotonous in c (also in b) .  Therefore, there is on the 
topological boundary of T on one side a point with a lower (or equal) value of E, on the 
other side one with a bigger (or equal) value. Since the boundary of T is connected, and 
E is continuous on each f ( K ) ,  there is also a point on the boundary with the same value 
for E as given by E(g, p K ) .  But every point on the boundary of T is already a convex 
combination of three 8,(f). That proves one direction. Conversely, any 6 measure may 
be approximated by elements of C? in the w*  topology of C(K)’ .  

Corollary. In the case that one of g’, V . g,  Vis a constant, or g2 = V, or g 2  = V . g, then it 
suffices to consider convex combinations of two S measures. 

Proof. The proofs of theorems 1 and 2 also hold in one less dimension, because at least 
one parameter, b or c, is left for the monotonicity argument. 

The proofs also show that in the cases where inf E(g, p )  is not obtained for some p, it 
has to be approximated by convex combinations of 8-measures &, where some 
subsequence of the { x , }  tends out of the allowed region. If one can disprove this 
possibility in a special case, equations 6 ( a ) - ( d )  may be used to gain further information 
on where to search for the minimum (example 1). It is now easy to justify these 
equations. Suppose 

with 

Take any x., {xl, x 2 ,  x 3 }  and consider the four-dimensional Euclidian space 
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{X:=, Ai&,}, where the A i  are the Cartesian coordinates. Now you have to search for the 
minimum of 

in the cone {Ai  3 0). 
The conditions that F(A? .  . . A: = 0) is minimal are for the A Y  not equal to zero: 

a 
ah 
- - F ( A i . .  . 

and this gives equation 6 ( a ) .  
For the AY = 0 (e.g. A4)  

and this gives equation 6(6). 
There are cases, of course, where the minimising p is not unique. This situation 

occurs, for example, if you choose g = -VJ,/J,, where J, is the solution of Schrodinger’s 
equation which turns out to be equivalent to 

(16) (V . g ) ( x )  - g 2 ( x )  + V ( X )  - E = 0. 

In that case the lower bound is optimal. Use (16) to substitute for V . g in equation (4): 

(17) 
Therefore 

inf l.L E(VJ,/J,, CL) =E.  (18) 

If we do not have to consider Fermi statistics, the wavefunction of the ground state may 
be chosen positive and g = VJ,/$ is admissible. So one may hope to derive reasonable 
lower bounds by making a good guess for J, (or rather for VI,+/*: see example 2 ) .  

For a particle in one space dimension we can use the node theorem to derive lower 
bounds for any excited state. The zeros of the eigenfunction J,,, corresponding to the 
(1  + n)th eigenvalue E, divides R into n + 1 intervals IK. In any other partition of R into 
n + 1 intervals JK there exists at least one K and a I such that JI 2 IK. Define 

and let HJ be the Hamiltonian K + V with Dirichlet boundary conditions on the n 
endpoints of the JK. q5K is in the domain of Hr and therefore 

To use the Dirichlet boundary condition effectively, one has to choose a g with 
appropriate singularities at n points. The same kind of reasoning applies to the radial 
equation in spherically symmetric systems. 
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In one space dimension, Fermi statistics can also be taken into account: the 
eigenvalues of H on the space of antisymmetric functions + ( x l  . . . x,,) are the same as 
for H with Dirichlet boundary conditions on the hyperplane x, = x,. 

5. Some simple examples 

Example 1. The square well 

H = -d2/dx2 on [-l ,  + I ]  with Dirichlet boundary conditions. Take g(x) = eKx to obtain 

Eo 5 ~ ~ ( e “ ” ) ~ / 4 ( e ~ ” ” ) .  (21) 

You see immediately that it is not enough to consider the measures with only one point 
as support. That would lead to the paradoxical result E o 5 i ~ 2 ,  where K is any real 
number! Apply instead the equations (6): a ( p )  = ~ ( e “ ” ) / 2 ( e ~ “ “ )  is certainly positive. 
The first factor of 6(a)  and 6 ( b )  is f(x) = (YK eKx - a’ e2Kx -E,  which has one maximum 
and goes continuously down on both sides of it. Since f has to be positive on [ - I ,  +1], 
except on supp(p), the support of the minimising measure has to be the endpoints, -1 
and +1. It remains only to determine their relative weight. One arrives at 

K L  

2 + e21K + e-21K ’ 
Eo t 

which is, however, numerically poor. 
The best choice for g in this case, yielding the exact ground-state energy, is 

tan(.rrx/21). This may serve as a guide as to how to deal with Dirichlet boundary 
conditions in general: the appropriate singularity of g is like l/x. We will use this in  the 
last example. 

Example 2. V = -1Ir’ in three dimensions, 0 < U < 1 

Take g(x) = x/r, r = 1x1: 

Here we have used that z is concave in z ,  which implies ( z  ”) S ( z )” .  The bound is exact 
for U = 1 and U = 0. Of course, g = V$/$, $ = e-“’, which is the ground state of the 
Coulomb problem. A seemingly innocent change in $ may change the quality of the 
lower bound drastically: try to use $ = e-x2, which gives g = x and 

Eo t inf(4(r2))-’ - (r-”) = --CO. 

Example 3. V = Ar2“ in n dimensions, U > 1 

Take g = x and use the convexity of z ”  in z ,  z = r2: 

The bound is exact for the harmonic oscillator (v = 1). 
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Example 4. V = 1-cos x in one dimension 

Writing the (unnormalised) ground-state function as (1, = 1 + C ak cos kx and minimis- 
ing 11$11-’($, H$) by varying a1 . . . a3 gives as the upper bound 

EO C 0.622, (25)  

which is obtained for a l  = 0.759, a2 = 0,087, a3 = 0.004. The best g ought to be 

C kak sin k,  
1 + C ak COS kx 

We take a crude approximation, g = sin x,  which yields 

(cos x)’ 
Eo 3 inf + 1 -(cos x ) ] .  

In the spirit of the proof of theorem 2, we examine the convex hull of 
{(sin’ x, cos x,  cos x ) }  =f(R).  It is the interior of a piece of the parabola {(1 - a 2 ,  a, a ) }  
and E takes its lowest values on that part of the boundary which is f(R). Therefore 

(27)  Eo3inf{acot2 x + 1 -cos x }  = 0.53. 

Example 5. One-dimensional ‘helium atom’ 

Two particles, V ( x ,  y )  = 21x1 + 21~1- / x  - y 1. To obtain a lower bound for the ground 
state with Fermi statistics we impose Dirichlet boundary conditions on the line x = y 
and choose 

g = (;;)lx - y I - l .  

{ ( a ( x ,  y ) ,  b(x ,  y ) }  = {(a, b = y/a ’ ) ,  y 2 1). This set is already convex. The minimum is 
attained for y = 1: 

(29)  3 
E O , F  3 inf{$a-* + a }  = 5. 

This is actually higher than a simple upper bound for the ground state without statistics, 
obtained with Gaussian functions: 

Example 6. Gravitating bosons 

The trial function g has to be a 3N-component vector. We write g = (gl . . , gN), where 
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each g, is a three-vector which we choose as 

XI - x ,  
g,=C-. 

/ # I  I& -4  
This yields 

(V . g)  = 4 ] X I  -xJ1 
1 ==I 

and 

This is the same bound as that one which is implicit in Thirring (1974b, 01.2). 

6. Other bounds 

Starting with equations (4) and ( 5 )  we can derive other lower bounds. Substitute 
(V . g - g2) + g2 for v . g in equation (4): 

2 2  

E(g, p ) = ((’ (’ * - )) + g (g ’) t- 2 p  (V . g - g ’)) + p ( V )  
CL ( g 2 )  

Therefore 
Eoz in f  U p(V.g-g2)B(p(V . g - g 2 ) ) + p ( V ) .  

B is the step function: 

Applying the same kind of arguments used to prove theorems 1 and 2, one can show 
that it suffices to consider those g which are convex combinations of two S measures. 

Up to this point the lower bounds for the kinetic energy have always been 
non-negative. This is no longer true in the next step, where we leave out the 0 function: 

The infimum has to be taken over all x in the allowed set. This yields Barnsley’s (1978) 
bound: set g = -V$/$; then the RHS of equation (33) reads 

inf [(H+)(x )/+b )I. 

7. Discussion 

The examples of 9 5 were not meant to demonstrate numerical efficiency but to show 
how the method may be applied in various circumstances. A quantitative test and 
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comparison with other well known methods (Lowdin 1965, Bazley and Fox 1963, 
Thirring 1974a) would necessitate extensive computer studies. The numerical search 
for the infimum of E(g, p )  should present no difficulties in situations where not too 
many coordinates are involved. 

One thing remains to be done: to find a systematic approximation procedure for the 
best g. Certainly it is not sufficient in general to have a sequence g, = V$,/$,, with $, 
converging to the ground state in the 9* norm. By examining example 2, it is easy to 
find counterexamples. It may be that a method similar to that of Bartlett (1955) leads to 
useful trial functions. 
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